45 research outputs found

    Using LaX scintillator in a new low-background Compton telescope

    Get PDF
    The ability of Compton telescopes to perform imaging and spectroscopy in space depends directly on the speed and energy resolution of the calorimeter detectors in the telescope. The calorimeter detectors flown on space-borne or balloon-borne Compton telescopes have included NaI(Tl), CsI(Na), HPGe and liquid organic scintillator. By employing LaX scintillators for the calorimeter, one can take advantage of the unique speed and resolving power of the material to improve the instrument sensitivity and simultaneously enhance its spectroscopic performance and thus its imaging performance. We present a concept for a space-borne Compton telescope that employs LaX as a calorimeter and estimate the improvement in sensitivity over past realizations of Compton telescopes. With some preliminary laboratory measurements, we estimate that in key energy bands, typically corrupted with neutron-induced internal nuclear emissions, this design enjoys a twenty-fold improvement in background rejection

    Position Resolution in LaBr3 and LaCl3 Scintillators Using Position-Sensitive Photomultiplier Tubes

    Get PDF
    Advanced scintillator materials such as LaBr3:Ce and LaCl3:Ce hold great promise for future hard X-ray and gamma-ray astrophysics missions due to their high density, high light output, good linearity, and fast decay times. Of particular importance for future space-based imaging instruments, such as coded-aperture telescopes, is the precise spatial location of individual gamma-ray interactions. We have investigated the position and energy resolution achievable within monolithic (5 cm × 5 cm × 1 cm) LaBr3:Ce and LaCl3:Ce crystals using position-sensitive light readout devices, including a position-sensitive photomultiplier tube and a multi-anode photomultiplier tube. We present the results of these tests and discuss the applicability of such advanced scintillators to future high-energy imaging astrophysics missions

    Gas micro-well track imaging detectors for gamma-ray astronomy

    Get PDF
    We describe our program to develop gas micro-well detectors (MWDs) as three-dimensional charged particle trackers for use in advanced gamma-ray telescope concepts. A micro-well detector consists of an array of individual micro-patterned gas proportional counters opposite a planar drift electrode. The well anodes and cathodes may be connected in X and Y strips, respectively, to provide two-dimensional imaging. When combined with transient digitizer electronics, which record the time signature of the charge collected in the wells of each strip, full three-dimensional reconstruction of charged-particle tracks in large gas volumes is possible. Such detectors hold great promise for advanced Compton telescope (ACT) and advanced pair telescope (APT) concepts due to the very precise measurement of charged particle momenta that is possible (Compton recoil electrons and electron-positron pairs, respectively). We present preliminary lab results, including detector fabrication, prototype electronics, and initial detector testing. We also discuss applications to the ACT and APT mission concepts, based on GEANT3 and GEANT4 simulations

    A hard X-ray polarimeter designed for transient astrophysical sources

    Get PDF
    — This paper discusses the latest progress in the development of GRAPE (Gamma-Ray Polarimeter Experiment), a hard X-ray Compton Polarimeter. The purpose of GRAPE is to measure the polarization of hard X-rays in the 50-300 keV energy range. We are particularly interested in X-rays that are emitted from solar flares and gamma-ray bursts (GRBs). Accurately measuring the polarization of the emitted radiation from these sources will lead, to a better understating of both the emission mechanisms and source geometries. The GRAPE design consists of an array of plastic scintillators surrounding a central high-Z crystal scintillator. We can monitor individual Compton scatters that occur in the plastics and determine whether the photon is photo absorbed by the high-Z crystal or not. A Compton scattered photon that is immediately photo absorbed by the high-Z crystal constitutes a valid event. These valid events provide us with the interaction locations of each incident photon and ultimately produces a modulation pattern for the Compton scattering of the polarized radiation. Comparing with Monte Carlo simulations of a 100% polarized beam, the level of polarization of the measured beam can then be determined. The complete array is mounted on a flat-panel multi-anode photomultiplier tube (MAPMT) that can measure the deposited energies resulting from the photon interactions. The design of the detector allows for a large field-ofview (\u3e π steradian), at the same time offering the ability to be close-packed with multiple modules in order to reduce deadspace. We plan to present in this paper the latest laboratory results obtained from GRAPE using partially polarized radiation sources

    Radiation Damage and Activation from Proton Irradiation of Advanced Scintillators

    Get PDF
    We present results from a proton accelerator beam test to measure radiation damage and activation in advanced scintillator materials. Samples of LaBr3:Ce and LaCl3:Ce were exposed to protons from 40-250 MeV at the Proton Irradiation Facility of the Paul Scherrer Institute in Switzerland. Twelve energy bands were used to simulate the spectrum of the South Atlantic Anomaly (SAA), with different samples exposed to the equivalent of 4 months, 1 year, and 5 years of SAA passage. No significant decrease in light output was found due to radiation damage, indicating that these new scintillator materials are radiation tolerant. High-resolution spectra of the samples were obtained before and after irradiation with a Germanium spectrometer to study activation. We present a detailed analysis of these spectra and a discussion of the suitability of these scintillator materials for detectors in future space missions

    Prospects for GRB Polarimetry with GRAPE

    Get PDF
    This paper discusses the latest progress in the development of GRAPE (Gamma‐Ray Polarimeter Experiment), a hard X‐ray Compton Polarimeter. The purpose of GRAPE is to measure the polarization of hard X‐rays in the 50–300 keV energy range. We are particularly interested in X‐rays that are emitted from solar flares and gamma‐ray bursts (GRBs). Accurately measuring the polarization of the emitted radiation from these sources will lead to a better understating of both the emission mechanisms and source geometries. The GRAPE design consists of an array of plastic scintillators surrounding a central high‐Z crystal scintillator. We can monitor individual Compton scatters that occur in the plastics and determine whether the photon is photo absorbed by the high‐Z crystal or not. A Compton scattered photon that is immediately photo absorbed by the high‐Z crystal constitutes a valid event. These valid events provide us with the interaction locations of each incident photon and ultimately produces a modulation pattern for the Compton scattering of the polarized radiation. Comparing with Monte Carlo simulations of a 100% polarized beam, the level of polarization of the measured beam can then be determined. The complete array is mounted on a flat‐panel multi‐anode photomultiplier tube (MAPMT) that can measure the deposited energies resulting from the photon interactions. The design of the detector allows for a large field‐of‐view (\u3e π steradian), at the same time offering the ability to be close‐packed with multiple modules in order to reduce deadspace. We present in this paper the latest laboratory results obtained from GRAPE using partially polarized radiation sources along with a brief description of our future plans for the GRAPE design

    Plans for the first balloon flight of the gamma-ray polarimeter experiment (GRAPE)

    Get PDF
    We have developed a design for a hard X-ray polarimeter operating in the energy range from 50 to 500 keV. This modular design, known as GRAPE (Gamma-Ray Polarimeter Experiment), has been successfully demonstrated in the lab using partially polarized gamma-ray sources and using fully polarized photon beams at Argonne National Laboratory. In June of 2007, a GRAPE engineering model, consisting of a single detector module, was flown on a high altitude balloon flight to further demonstrate the design and to collect background data. We are currently preparing a much larger balloon payload for a flight in the fall of 2011. Using a large (16-element) array of detector modules, this payload is being designed to search for polarization from known point sources of radiation, namely the Crab and Cygnus X-1. This first flight will not only provide a scientific demonstration of the GRAPE design (by measuring polarization from the Crab nebula), it will also lay the foundation for subsequent long duration balloon flights that will be designed for studying polarization from gamma-ray bursts and solar flares. Here we shall present data from calibration of the first flight module detectors, review the latest payload design and update the predicted polarization sensitivity for both the initial continental US balloon flight and the subsequent long-duration balloon flights

    GRAPE: a balloon-borne gamma-ray polarimeter

    Get PDF
    The Gamma-RAy Polarimeter Experiment (GRAPE) is a concept for an astronomical hard X-ray Compton polarimeter operating in the 50 - 500 keV energy band. The instrument has been optimized for wide-field polarization measurements of transient outbursts from energetic astrophysical objects such as gamma-ray bursts and solar flares. The GRAPE instrument is composed of identical modules, each of which consists of an array of scintillator elements read out by a multi-anode photomultiplier tube (MAPMT). Incident photons Compton scatter in plastic scintillator elements and are subsequently absorbed in inorganic scintillator elements; a net polarization signal is revealed by a characteristic asymmetry in the azimuthal scattering angles. We have constructed a prototype GRAPE module that has been calibrated at a polarized hard X-ray beam and flown on an engineering balloon test flight. A full-scale scientific balloon payload, consisting of up to 36 modules, is currently under development. The first flight, a one-day flight scheduled for 2011, will verify the expected scientific performance with a pointed observation of the Crab Nebula. We will then propose long-duration balloon flights to observe gamma-ray bursts and solar flares

    Scintillator gamma-ray detectors with silicon photomultiplier readouts for high-energy astronomy

    Get PDF
    Space-based gamma-ray detectors for high-energy astronomy face strict constraints of mass, volume, and power, and must endure harsh operating environments. Scintillator materials have a long history of successful operation under these conditions, and new materials offer greatly improved performance in terms of efficiency, time response, and energy resolution. The use of scintillators in space remains constrained, however, by the mass, volume, and fragility of the associated light readout device, typically a vacuum photomultiplier tube (PMT). Recently developed silicon photomultipliers (SiPMs) offer gains and efficiencies similar to those of PMTs, but with greatly reduced mass and volume, high ruggedness, and no high-voltage requirements. We have therefore been investigating the use of SiPM readouts for scintillator gamma-ray detectors, with an emphasis on their suitability for space- and balloonbased instruments for high-energy astronomy. We present our most recent results, including spectroscopy measurements for lanthanum bromide scintillators with SiPM readouts, and pulse-shape discrimination using organic scintillators with SiPM readouts. We also describe potential applications of SiPM readouts to specific highenergy astronomy instrument concepts

    A compton telescope for remote location and identification of radioactive material

    Get PDF
    The spare detectors from NASA\u27s Compton Gamma-Ray Observatory COMPTEL instrument have been reconfigured to demonstrate the capability at ground level to remotely locate and identify sources of gamma radiation. The gamma-ray experimental telescope assembly (GRETA) employs two 28 cm diameter scintillation detectors separated by 95 cm: one 8.5 cm thick liquid scintillator detector and one 7.5 cm thick NaI(Tl) detector. The assembly electronics and real-time data acquisition system measures the energy deposits and time-of-flight for each coincident detection and compiles histograms of total energy and incident angle as computed using the kinematics of Compton scattering. GRETA\u27s field of view is a cone with full angle approximately 120deg. The sensitive energy range is 0.3 to 2.6 MeV. Energy resolution is ~10% FWHM. The angular resolution is better than 5deg. We have previously reported measurements using a simplified readout configuration that limited GRETA\u27s imaging ability to a rough (~15deg) directional sensitivity. Here we report on measurements using the full (15-channel) readout that can achieve ~1.5-cm position resolution in each scintillator and permits true Compton imaging using COMPTEL software. GRETA has been refurbished to allow for ease of transport and field use with updated real time imaging and identification software. We present most recent laboratory measurements of radioactive sources of concern, 137Cs and 60Co, potential candidates used with radiological dispersal devices
    corecore